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1 Introduction 

In the past decades, networked control systems have 
attracted considerable attention due to the rapid 
development of network communication 
technologies [1]. As is known to all, only when the 
system is stable, on the basis of the analyses other 
performance of the control system is of practical 
significance. The stability analysis and control 
design are very important research topics for neural 
networks. Nowadays, the study of the stability 
analysis of neural networks has gained popularity 
among researchers, and some remarkable results 
have been reported in the literature [2-4].  

In practical industrial control systems, uncertainty 
and time delay are widespread, which may lead to 
system instability and system performance 
degradation, which also aggravate the difficulty and 
complexity of system analysis and synthesis. 
Therefore, delayed neural networks have been 
proposed and have received a great deal of attention 
[4-8]. In [2], the stability analysis of delayed 
cellular neural networks was given. In [4], Wu et al. 
investigated the exponential stability of neural 
networks with time-varying delay. In [7], Xia et al. 
studied the robust stability for neutral-type uncertain 
neural networks with Markovian jumping 
parameters and time-varying delays. In [8], Ma et al. 
considered the stabilization of networked switched 
linear systems. However, from practical 
considerations, there exist some systems, whose 

behavior may be only defined over a finite time 
interval or state variables are required to be within 
specific bounds. For this case, it is very important to 
study s the finite-time stability and stabilization [9-
17].  In [9], Stojanovic dealt with the robust finite-
time stability of discrete time systems with interval 
time-varying delay. In [11], the finite-time 
boundedness of uncertain time-delayed neural 
network with Markovian jumping parameters was 
considered. In [13], Dong et al. considered finite-
time boundedness analysis and H∞ control for 
switched neutral systems with mixed time-varying 
delays. In [15], Lv et al, considered the finite time 
stability and controller design for nonlinear 
impulsive sampled-data systems. To the best of our 
knowledge, the problem of robust finite-time 
stabilization for uncertain neural networks with 
time-varying delays has rarely been studied.  

This paper studies the finite-time boundedness 
and stabilization for uncertain neural network with 
time-varying delay. We developed the sufficient 
conditions of finite-time boundedness for a class of 
neural networks with time-varying delay. Then, we 
proposed the sufficient conditions of finite-time 
stabilization for neural networks with time-varying 
delay. We provide a numerical example to 
demonstrate the proposed results in this paper. 

The rest of the paper is organized as follows. In 
Section 2, the system description, necessary 
definitions and lemmas are given. In Section 3, the 
sufficient conditions are derived to ensure finite-
time stabilization of the uncertain delayed neural 
networks. In Section 4, an numerical example is 
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given to demonstrate the validity of the proposed 
method. Finally, some conclusions are given in 
Section 5. 
Notation. N is a set of all natural numbers, n nR   
represent the set of n n real matrices, TA is the 
transpose of A, and 1A  is the inverse of A. 

0X  ( 0X  ) means X is a positive definite  (semi-
positive definite ) matrix. * represents the elements 
below the main diagonal of a symmetric matrix. 

 min M  and  max M  stand for the minimum and 
maximal eigenvalue of a matrix M , respectively.  

2 Problem Formulation 
We consider the uncertain neural networks with 
time-varying delay as follows: 

0 0

1 1

( ) ( ( )) ( ) ( ( )) ( ( ))
( ) ( ( )) ( ( ))

( ( )) ( ( ( ))),
( ) ( ), [ ,0],

x t A+ A t x t C+ C t x t t

Bu t W W t f x t

W W t f x t t

x t t t h

  



 



   


  


  
   

    (1) 

where 1 2( ) [ ( ), ( ), , ( )] n

nx t x t x t x t R  denotes the 
state vector with n neurons. ( ) mu t R is the control 
input, ( ) mt R  is the initial condition. ( )t is the 
time-varying delay and satisfies 

0 ( ) , 0 ( ) ,t h t       

0W and 1W are the connection weight matrix and the 
delayed connection weight matrix, respectively, 

0 1, , , , ,A W W B C are constant matrices with 
appropriate dimension, and 1 2( , , , ).nA diag a a a  
The parameter uncertainties 0 1, , ,A W W C     
satisfy 

0 0 0 1 1 1

0 2 2 2 1 3 3 3

( ) , ( ) ,
( ) , ( ) ,

A H F t E C H F t E

W H F t E W H F t E

 

 

 

 
       (2) 

where , , 0,1,2,3,i iH E i  are known real constant 
matrices. ( ), 1,2,3,4,iF t i  are unknown  matrix 
which  satisfy 

( ) ( ) .T

i iF t F t I  

1 1 2 2( ( )) [ ( ( )), ( ( )), , ( ( ))]T n

n nf x t f x t f x t f x t R    is 
the neuron activation function with (0) 0f  and 
satisfies 

( ) ( ) , , , 1,2, , ,i i if f R i n             
(3) 

where , 1,2, , ,i i n  are known constants. 
To obtain the main results, the following lemmas 

and definitions are necessary. 
Lemma 1 [18]. For matrices D, E and Y of 
appropriate dimensions and ,TY Y then 

0,T T TY DFE E F D    

holds for all matrix F satisfying ,TF F I  if and 
only if there exists a constant 0,  such that 

1 0.T TY DD E E      
Lemma 2 [19]. For a given matrix p mB R  with 
rank ( ) ,B p assume that m mX R  is a symmetric 
matrix, then there exists a matrix ˆ p pX R  such 
that ˆ ,BX XB if and only if 11 22

ˆ ˆ( , ) ,TX Vdiag X X V  
where 11

ˆ p pX R  and ( ) ( )
22

ˆ .m p m pX R     
Definition 1. Given three positive constants 

1 2, , ,c c T with 1 2 ,c c and a positive definite matrix R. 

The uncertain neural networks (1) with ( ) 0u t  is 
said to be finite-time bounded with respect 
to  1 2, , , ,c c T R if 

     1 2
0

sup { ( ) } [0 ]T T

h

x Rx c x t Rx t c , t ,T .


 
  

    

          (4) 
We consider the full-state feedback controller,  

 ( ) ( ),u t Kx t                         (5) 
where K is the controller gain. 
Definition 2. Given three positive constants 

1 2, , ,c c T with 1 2 ,c c and a positive definite matrix R. 

The uncertain neural networks (1) with controller (5) 
is said to be finite-time stabilizable  with  respect  to 
 1 2, , , ,c c T R if 

     1 2
0

sup { ( ) } [0 ]T T

h

x Rx c x t Rx t c , t ,T .


 
  

    

 

3 Main results 
We consider the following neural networks 

0 0

1 1

( ) ( ( )) ( ) ( ( )) ( ( ))
( ( )) ( ( ))
( ( )) ( ( ( ))),

( ) ( ), [ ,0].

x t A+ A t x t C+ C t x t t

W W t f x t

W W t f x t t

x t t t h

  



 



   


 


  
   

  (6) 

Firstly, we give the sufficient conditions for finite-
time boundedness of neural networks (6). 
Theorem 1. For given a matrix 0,R  and positive 
scalars 1 2 , ,c c T  the system (6) is finite-time 
bounded with respect to  1 2, , , ,c c T R if there exist 
positive definite symmetric matrices , , , , ,P Q S T Z  
and diagonal matrices 0, 0,X V  and positive 
scalars 1 1 2 3 4 5, , , , , , ,, k k k k k   such that 

11 12

22

0,
*
 




 
  
 

                    (7)   

3 5

1 1 2 3 4 5 1 2( ) ,
2 12

Th h
c k hk hk k k c e             (8)  

  where 
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11 0 1

22

11 33

44

0 1 2 3

12

22
2

2 2
11

0 0

22

0
* 0 0 0

,* * 0 0
* * * 0
* * * *

0
0 0 0 0 0

,0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

( , , , , , ),

( )
2

2 ,

(1

T

T

PC PW V PW

T

PH PH PH PH

diag Z I I I I

h
PA A P Q h T Z X

V P E E

 
 
 
 
 
 
  

 
 
 
 
 
 
  

     

      

  

  





 





    

  

  

 1 1

33 2 2

44 3 3

) ,

,

(1 ) ,

T

T

T

Q E E

S X E E

S E E



  

   

 

 

  

 

     

   

1 2
1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1
2 2 2 2

1 min

1 max 2 max 3 max

4 max 5 max

( , , , ),

, , ,

, , ,

, , ,

, , .

ndiag

P R PR Q R QR W R WR

T R TR Z R ZR P

k P k Q k W

k T k Z W S

     

   

    

  

    

     

      

 

Proof:  Choose the following Lyapunov-Krasovskii 
functional: 

         1 2 3 4V t V t V t V t V t ,           (9) 
where 

1

2 ( )

( )

( ) ( ) ( ),

( ) ( ) ( )

( ( )) ( ( )) ,

T

t
T

t t

t
T

t t

V t x t Px t

V t x Qx d

f x Sf x d





  

  















 

3

2 0 0

4

( ) ( ) ( ) ,

( ) ( ) ( ) .
2

t t
T

t h

t
T

h t s

V t h x s Tx s dsd

h
V t x u Zx u dudsd



 





 

  









 

Taking the derivative of   1 2 3 4iV t ,i , , , along the 
trajectory of system (6), we have 

1

0

0 0

( ) ( )( ( ) ( ) ) ( )

( )( ( )) ( ( )) ( ( ))
( ( ) ) ( ) ( )(

( )) ( ( )) ( ( ))(

T T T

T T

T T T

T T

V t x t PA A P P A t A t P x t

x t PC P C t x t t x t t

C t P C P x t x t PW

P W t f x t f x t W P

      

     

   

  

 
 

0 1 1

1 1

( ) ) ( ) ( )( ( ))
( ( ( )))

( ( ( )))( ( ) ) ( ),

T T

T T T

W t P x t x t PW P W t

f x t t

f x t t W P W t P x t

   

 

   





 

     

  
  

2

2
3

2 02
4

0

( ) ( ) ( ) (1 ) ( ( )) ( ( ))

(1 ) ( ( ( ))) ( ( ( )))
( ( )) ( ( )),

( ) ( ) ( ) ,

( ) ( ) ( ) ( )
2

T T

T

T

T
t t

T

t h t h

T
t

T

h t

t

h t

V t x t Qx t x t t Qx t t

f x t t Sf x t t

f x t Sf x t

V t h x t Tx t x d T x d

h
V t x t Zx t x s dsd

Z x s dsd

 

 

 

    

   



 

 



 

 

 





  

  

   





(10) 
For diagonal matrices 0 0X ,V ,   using (3), one 
has 

( ( )) ( ( )) ( ) ( ),
2 ( ) ( ( )) 2 ( ) ( ),

T T

T T

f x t Xf x t x t X x t

x t Vf x t x t Vx t

  

  
       (11) 

and from (10) and (11), we get 
( ) ( ) ( ) ( ),TV t V t t t                 (12) 

where

     
0

( ) [ ( ), ( ( )), ( ( )), ( ( ( ))),

, ],

T T T T T

T T
t t

t h h t

t x t x t t f x t f x t t

x d x s dsd


  

  
  

  

  
 

11 12 13 14 0 0
* (1 ) 0 0 0 0
* * 0 0 0

,
* * * (1 ) 0 0
* * * * 0
* * * * *

Q

S X

S

T

Z

 
 

 
 
 

   
  

 
 

  

   





11 0 0 0 0 0 0
2

2 2

12 1 1 1

13 0 2 2 2

14 1 3 3 3

( ) ( )

( ) 2 ,
2

( ) ,
( ) ,
( ) ,

T T T TPA A P PH F t E E F t H P

h
Q h T Z X V P

PC PH F t E

PW PH F t E V

PW PH F t E











    

        

 

  

 

 

From (2), the matrix   can be rewrite  
,T T T     

where  
11 12 13 14 0 0
* (1 ) 0 0 0 0
* * 0 0 0

,
* * * (1 ) 0 0
* * * * 0
* * * * *

Q

S X

S

T

Z

   





 
 

 
 
 

   
  

 
 

  
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0 1 2 3

0 1 2 3

0 1 2 3
2

2 2
11

12

13 0

14 1

0 0
0 0 0 0 0 0
0 0 0 0 0 0

,
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

( ( ), ( ), ( ), ( ),0,0),
( , , , ,0,0),

( )
2

2 ,
,

,
.

T

PH PH PH PH

diag F t F t F t F t

diag E E E E

h
PA A P Q h T Z X

V P

PC

PW V

PW

 
 
 
 

   
 
 
 
  

 

 

        

  



 













 

   From Lemma 1, 0   if 
1

11 12 13 14

1 1

33

44

+
0 0

* (1 ) 0 0 0 0
* * 0 0 0
* * * 0 0
* * * * 0
* * * * *

0,

T T

TQ E E

T

Z

     

 
 

  
 
 

  
 
 
 

  



 

   

 





 
(13) 

where 
2

2 2
11

1
0 0 0 0 1 1

2 2 3 3

33 2 2

44 3 3

( ) 2
2

(

),

,

(1 ) .

T

T T T

T T

T

T

h
PA A P Q h T Z X V

P E E PH H P PH H P

PH H P PH H P

S X E E

S E E



          

   

 

  

   



  

 

  

By using the Schur complement lemma, (13) is 
equivalent the following matrix: 

11 12

22

0,
*
 




 
  
   

where 
11 0 1

22

11 33

44

0
* 0 0 0

,* * 0 0
* * * 0
* * * *

PC PW V PW

T

 
 
 
 
 
 
  





 

  

0 1 2 3

12

22
2

2 2
11

0 0

22 1 1

33 2 2

44 3 3

0
0 0 0 0 0

,0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

( , , , , , ),

( )
2

2 ,

(1 )

,

(1 ) .

T

T

T

T

T

PH PH PH PH

diag Z I I I I

h
PA A P Q h T Z

X V P E E

Q E E

S X E E

S E E

 
 
 
 
 
 
  

     

     

   

   

  

   



    



    

  

 

  

 

From condition (7), we know that  
( ) ( ) 0,V t V t                        (14) 

So, we have  
( ) ( ),V t V t                          (15) 

Integrating (15) from 0 to t , [0, ],t T yields, 
( ) (0),tV t e V                      (16) 

It then follows that 
min ( ) ( ) ( ) ( ),TP x t Rx t V t               (17) 

According the condition (8) , we can obtain 
0

(0)

0

(0)

0 0

2 0 0 0

max

max
0

max
0

3

(0) (0) (0) ( ) ( )

( ( )) ( ( ))

( ) ( )

( ) ( )
2
( ) (0) (0)

( ( )) sup { ( ) ( )}

( ( )) sup { ( ) ( )}

T T

T

T

h

T

h s

T

T

h

T

h
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h
x u Zx u dudsd
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h Q x Rx

h W x Rx

h













  

  







  

  









  

  

 



















 

  

max
0

5

max
0

3 5

1 2 3 4 5
0

( ( )) sup { ( ) ( )}
2

( ( )) sup { ( ) ( )}
12

( ) sup { ( ) ( )}
2 12

T

h

T

h

T

h

T x Rx

h
Z x Rx

h h
k hk hk k k x Rx







  

  

 

  

  

  



    

 
3 5

1 1 2 3 4 5( ).
2 12
h h

c k hk hk k k    

 
(18) 

From (8) , (17) and (18), one get that 
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min
3 5

1 1 2 3 4 5

1

2

( )( ) ( )
( )

( )
2 12

.

T

T

V t
x t Rx t

P

h h
c k hk hk k k

e

c









   





 

Thus, the uncertain neural networks (6) is finite-
time bounded with respect to  1 2, , , .c c T R The proof 
is completed. 
   Under control (5), the closed-loop system of (1) is 

0 0

1 1

( ) ( ( ) ) ( ) ( ( )) ( ( ))
( ( )) ( ( ))
( ( )) ( ( ( ))),

( ) ( ), [ ,0].

x t A+ A t BK x t C+ C t x t t

W W t f x t

W W t f x t t

x t t t h

  



 



    


 


  
   

  (19)                                                                
Next, we will design controller (3), such that 

the system (19) is finite-time bounded with respect 
to  1 2, , , .c c T R  
Theorem 2. For given a matrix 0,R  and positive 
scalars 1 2 , ,c c T  the neural networks (1) under the 
control (5) is finite-time stabilizable with respect 
to  1 2, , , ,c c T R if there exist matrices 

0, 0, 0, 0, 0,P Q S T Z Y      and diagonal 
matrices 0, 0,X V  and positive 
scalars 1 1 2 3 4 5, , , , , , ,, k k k k k   such that 

11 12

22

0,
*
 




 
  
 

                    (20)   

3 5

1 1 2 3 4 5 1 2( ) ,
2 12

Th h
c k hk hk k k c e             (21)    

where 
11 0 1

22

11 33

44

0 1 2 3

12

0
* 0 0 0

,* * 0 0
* * * 0
* * * *

0
0 0 0 0 0

,0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

PC PW V PW

T

PH PH PH PH





 





 
 
 
 
 
 
  

 
 
 
 
 
 
  

 

22
2

2 2
11

0 0

( , , , , ,),

( )
2

2 ,

T T T

T

diag Z I I I I

h
PA A P BY YB Q h T Z

X V P E E

    



    

     

       

   

 

22 1 1

33 2 2

44 3 3

11

22

(1 ) ,

,

(1 ) ,
ˆ

ˆ, .
ˆ

T

T

T

T

Q E E

S X E E

S E E

P
P V V PB BP

P

  

 

  

   

  

   

 
  

  

  

Furthermore, the controller gains are given by 
ˆ .T TK P Y  

Proof.  Replacing A with A BK, from Theorem 1, 
the system (19) is finite-time bounded if (21) and 
the following matrix inequality hold 

11 12

22

0,
*
 




 
  
 

                    (22)     

where 

11 0 1

22

11 33

44

2
11

2
2

0 0

22 1 1

ˆ 0
ˆ* 0 0 0

,* * 0 0
* * * 0
* * * *

ˆ

( ) 2 ,
2

ˆ (1 ) .

T T T

T

T

PC PW V PW

T

PA A P PBK K B P Q h T

h
Z X V P E E

Q E E





 





    

  

 
 
 
 
 
 
 

 

      

    

   

 

Let ˆY PK. Using Lemma 2, ,ˆPB BP  and (20) , 
we get 

0. 

 According to Theorem 1, the system (19) is finite-
time bounded  with respect to  1 2, , , ,c c T R and the 

controller gains are given by ˆ .T TK P Y  
Remark 1. It is worth noting that, if 0,   the 
neural networks (1) is global exponential stable, if 

0,   then the neural networks is asymptotically 
stable.

 

3  Numerical examples 
Consider the neural networks (1) with the following 
parameters  

0 1

2 0 1 3 5 4
, , ,

0 3 4 3 4 5
A W W

      
       

      
 

0

0 1 2

3 1 2

7 3 7 2 1 0
, , ,

6 9 4 5 0 4

5 0 3 0 2 0
, , ,

0 4 0 6 0 4

5 0 8 0 1 0
, , ,

0 6 0 6 0 3

B C E

H E E

E H H

     
       
     

     
       
     

      
       
     

 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2020.19.27 Mengxiao Deng, Yali Dong, Mengying Ding

E-ISSN: 2224-2678 216 Volume 19, 2020



3

1

2

1

1

4 0
, ( ) 0.1sin ,

0 3

tanh(0.4 ( ( )))
( ( ( ))) ,

tanh(0.2 ( ( )))

tanh(0.6 ( )) 0.6 0
( ( )) , ,

tanh(0.3 ( )) 0 0.3

H t t

x t t
f x t t

x t t

x t
f x t

x t

 
  
 

 
   

 

   
     

  






  

Take 
1 1, 2, , 0.5, 0.3, 0.3, 0.2.c T R I h        

 By using Matlab LMI control Toolbox to solve 
inequalities (20) and (21), we have 

0.0488 0.0020 19.0294 0.1126
, ,

0.0020 0.0967 0.1126 22.3732

15.8267 0.3130 15.2725 0.0000
, ,

0.3130 13.2863 0.0000 15.2725

15.2725 0.0000 6.4562 0
, ,

0.0000 15.2725 0 5.8017

P Q

S T

Z V

X

   
    

   

   
    
   

   
    
   

2

28.7279 0
, 487.3830.

0 25.3255
c

 
  
 

 

According to Theorem 2, the system (1) is finite-
time stabilizable with respect to  1 2c ,c ,T ,R .  The 
control gain is  

41.5562 3.1520
10 .

0.2417 0.2820
K

  
  

 
 

 
4 Conclusion 
In this paper, the finite-time stabilization problem of 
neural networks with uncertainty and time delay is 
studied. By constructing the Lyapunov-Krasovskii 
function and matrix inequality method, the 
sufficient conditions of finite-time stabilize for the 
uncertain neural networks with time-varying delay 
are obtained. The controller gain design method is 
given.  Finally, a numerical example is given to show 
the effectiveness the theoretical results. 
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